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SECTION I 

INTRODUCTION 

The high cost of military electronics has focussed attention at 

all levels on the possibility of using technology to lower the life- 

cycle costs of systems. The problems are enormously complicated by 

the multitude of interactions and interfaces that must be accommodated, 

by built-in costs that cannot be altered appreciably, and by the lack 

of confidence in new approaches to the design and procurement of equip- 

ment. A particularly severe problem is found in computer-related sub- 

systems; the present costs of both computer equipment and computer 

software are much too high.  Software is assuming an increasingly 

larger portion of the computer system costs, despite such innovations 

as "structured programming" and other similar means to discipline the 

design and debugging process.  The recent availability of low-cost 

mini-computers and micro-computers has raised the hope of decentralized 

computational facilities, and a corresponding lowering of the overall 

cost of the computer system components of large military systems. 

Another very promising approach to lowering the cost of computation 

is the special-purpose "satellite" processor.  It is not a solution to 

all computer problems, but it does apply to the requirements of many 

systems, and should be considered seriously during the conceptual design 

phase. 

The satellite processor is defined here as a device that can be 

attached to a general-purpose digital computer, using one or more of 
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the standard input/output peripheral channels of the computer. The 

satellite is designed to perform some well-defined portion of the 

system's computational load.  It can utilize hard-wired digital 

equipment for the execution of fixed algorithms, and it can 

contain general-purpose computer elements (e.g., micro-processors) 

as well.  Ordinarily it is not in series with the data stream, as 

might be the case with some hard—wired processors, but rather sits 

off to the side and manipulates data that have already been handled 

by the computer. 

The satellite's standard function is to process tables of data 

stored in the computer's memory. The computer programmer arranges to 

have the data available in a certain set of consecutive memory locations; 

he "calls" the satellite, and at some later time he can find the processed 

table occupying either the original locations or some other pre-arranged 

addresses.  With careful design of the satellite, it can be made very 

simple for the programmer to use, and can present a minimum of interface 

problems for the computer hardware designer. From the hardware point of 

view, the processor should appear to the computer as a standard peripheral 

device, such as an analog-to-digital converter or a magnetic disk memory; 

usually it is connected to a direct-memory-access (DMA) channel to permit 

the highest data-transfer rates.  From the software programmer's point 

of view, the satellite should be "set up" with a minimum number of 

commands, should require no programmer attention or monitoring while 

it is performing its tasks, and should present a minimum load on the 



computer's normal functions; e.g., the satellite should not require a 

maximum-rate data transfer of large blocks of data that would effectively 

paralyze the computer's central processor for some period of time. 

Satellite processors are not a new concept. Examples of commercially 

available devices in this class are the Fast Fourier Transform processor 

or other similar array processors, and units which rapidly compute 

transcendental functions. 

The satellite processor can represent a powerful tool in reducing 

both the cost and the risk of digital computation in a system.  In 

many cases the use of one or more satellites can greatly change the 

architecture of the overall system, and often can result in large 

direct savings in conventional computer hardware. 

Substantial software savings can often be obtained also, but they 

are somewhat more indirect and are heavily dependent upon both the hardware 

and software architecture utilized in the "conventional" approaches to 

the system design. Without satellite processors, the programmer is 

usually straining to make optimally efficient use of the computer's 

capability—by careful management of timing, use of complicated interrupt 

arrangements, overlaying of instructions and data, trading of memory 

for computation time, and searching for the shortest algorithms consistent 

with the desired accuracy. All of these activities make the programmer's 

task much more difficult, increase his tendency to make errors, and 

confuse the process of checking and debugging programs.  By using satellite 



processors, much of the computer's capacity is relieved, leaving the 

programmer with a relatively luxurious margin, and thereby permitting 

him to use "brute force" programming approaches that are easier to 

understand and document, and easier to test and debug. 

These satellites can be quite inexpensive with respect to design 

costs, hardware implementation costs, and the indirect costs of pro- 

grammer education.  Since the satellite functions are generally well- 

defined and repetitive, the devices are easy to test as isolated 

units (i.e., not connected to the computer), and can be tested in a 

straightforward manner by the programmer in the operational real-time 

computer environment. 

The comments made above about the relative virtues of satellite 

processors are, to a large extent, opinions held by the authors and 

their associates.  To place these opinions in context, and to give 

them some additional credibility, we have selected an example of a 

satellite processor that performs track correlations and other tasks 

in a track-while-scan radar system.  To be specific, so that detailed 

considerations can be examined, we have selected the Joint Surveillance 

System (JSS) as the particular radar application for treatment here. 



SECTION II 

THE JOINT SURVEILLANCE SYSTEM (JSS) 

The Joint Surveillance System (JSS) is a network of surveillance 

radars located in the continental United States, Alaska, and Canada. 

JSS is an air-sovereignty system intended to replace the existing SAGE 

system, and will provide real-time information on all aircraft within 

this large surveillance region. Data from groups of about 25 radar 

sites are brought together at Regional Operations Control Centers 

(ROCC's), each containing large-scale data-processing facilities and 

provisions for approximately 30 operators' consoles. 

Figure 2-1 shows a typical distribution of radars within control 

of a single ROCC; the circles have a radius of about 200 miles, which 

is representative of the surveillance range of the radars.  Some of 

the sites are capable of measuring target range and azimuth only, while 

others have height-finders, and a few have modern "3-D" radars.  In most 

cases, height information on a target is available only when requested; 

i.e., the ROCC must ask the radar to perform a height measurement on 

a particular target.  All sites can interrogate the IFF transponders 

carried by friendly military and civilian aircraft.  Data from the radars 

are transmitted to the ROCC's in a wide variety of standard formats. 

In all cases the basic radar information on aircraft targets is in 

polar form (range, azimuth, and height) expressed in the local coordinates 

of the surveillance site. 
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The data processor at a ROCC must perform many functions, among 

which are the following:  It must maintain two-way communications with 

each of the 25 radar sites, and register all of the incoming target 

measurements with respect to a common reference grid, after converting 

from polar to rectangular coordinates. The processor must display all 

of the registered data at operator consoles, allow the operators to 

initiate tentative tracks, and then automatically track up to 200 targets. 

When necessary, computations for guiding an interceptor aircraft to an 

intersection with a given track must be performed.  Track information 

and other data must be sent to and received from other ROCC's, the 

NORAD center, the Air Weather Service, and the FAA. 

There are several reasonable options for the configuration of 

computing equipment at a ROCC.  The simplest from a conceptual stand- 

point is a single large computer with sufficient speed and memory to 

perform all of the required tasks.  Another option is to sub-divide 

the computational problem into several relatively independent tasks, 

each performed by a separate computer, as shown in Figure 2-2.  On the 

basis of some informal studies conducted at MITRE, the multiple-computer 

option (where each computer is in the "medium-scale" class) represents 

a reasonable system architecture from the standpoint of hardware and 

software costs; the various separate tasks are each within the capability 

of medium-scale computers, the computational loads appear to be fairly 

well balanced, and the interfaces among the computers are relatively 

simple and straightforward. We cannot claim here that any multiple- 

11 
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computer configuration is an optimum one for the JSS problem, and 

there is no reason to believe that the particular arrangement shown 

in Figure 2-2 will actually be implemented for JSS. 

The arrangement of Figure 2-2 results in a physical separation 

of tasks, which has the advantage of simplifying our discussions in 

Section V about the cost impact of a special-purpose satellite. 

Therefore, for the remainder of this report we will use Figure 2-2 

to represent the "before" configuration of a hypothetical version of 

JSS. 

As shown in the figure, five computers are tied together with a 

bi-directional data bus (actually several independent busses).  Two 

of the computers, labelled A and B, operate more or less in parallel 

to handle the high volume of raw data generated by the radars. Using 

special-purpose multiplex interface units, they bring the asynchronous 

radar data into temporary core storage.  To limit the amount of data 

for subsequent processing, they perform various mapping and masking 

functions according to pre-set and/or operator-controlled thesholds 

and priority decisions.  Although as many as 8500 radar reports may 

enter the ROCC in any six-second data frame, the result of the masking 

and mapping is to place a firm upper bound of 3600 reports per frame 

on the data passed on to the rest of the processing system.  The two 

input computers perform polar-to-rectangular coordinate conversions 

on the data, and then provide "coarse" track correlation, as described 

below. 

13 



The large geographical extent of the surveillance volume for a 

ROCC places rather severe requirements on the accuracy of the coordinate 

conversion, and considerable effort has been expended in the JSS project 

to find a set of equations of minimum complexity which meet the require- 

ments.  If the raw data for a given radar report are represented as 

R (slant range), 9 (azimuth), and H (height) then the following pair 

of equations may be used to compute the X- and Y-coordinates of the 

report: 

X = K^ + K F sina + K, F2 sing 

Vj « uuou T   r\.Q Y = lLj +  Kg F cosa H- K„ F cosf 

where    F = A2  - (H-K.,)2 

a = 6 - K2 

6 = 2a - K3 

The nine constants K_ through Kq are functions of the particular 

location of the radar site from which the report was obtained.  Even 

these relatively simple equations can place a large burden on the 

computers, because two sines, two cosines, a square root, and at least 

seven multiplications must be performed for each of the 3600 reports 

in a data frame; special-purpose satellites which can rapidly compute 

sines and square roots may be essential adjuncts to the computers. 

14 



The process of "tracking" requires that one of the computers 

(labelled E in Figure 2-2) continuously updates a set of simple 

smoothing equations for each target. The track parameters are updated 

by comparing the predicted position of each target with the most recent 

radar reports. When a particular radar report lies close to the 

expected position of the target, the tracking algorithm assumes that 

the report is "correlated" with the target track, and updates the track 

parameters accordingly. Track correlation is thus a process of comparing 

the radar reports with the track predictions, and making decisions on 

the basis of the relative distances between them. 

As mentioned earlier, the JSS must have the computational capacity 

to track up to 200 targets.  If the computer were to use the simplest 

approach to correlation, it would have to test each of the 200 tracks 

against every one of the 3600 radar reports during any six-second 

data frame, or the equivalent of one correlation test every eight 

microseconds.  Since this would clearly consume most of the CPU 

capacity of a typical computer, it is necessary for the JSS programmer 

to employ a variety of tricks or stratagems to avoid the brute-force 

testing of 3600 reports against 200 tracks.  A part of the time-saving 

strategy is to first perform "coarse correlation" on the data, based 

on the notion that most of the 3600 reports are actually false alarms 

not correlated with any tracks; if the computer can recognize or tag 

those relatively few reports which are roughly correlated with the 

tracks, then the remaining reports can be ignored by the tracker. 

15 



Thus, using several types of sorting strategies which are not of 

direct interest here, the JSS programmer manages to make the following 

coarse test on each of the 3600 radar reports: Does the report lie 

within (say) 12 miles of the expected position of any track? We shall 

call this particular test the coarse track-correlation.  Only those 

reports yielding an affirmative answer are passed on to the precision 

tracker which makes the final fine-grain correlations.  In the ROCC 

configuration shown in Figure 2-2,  input computers A and B perform 

the function of coarse track-correlation, while computer E performs 

final correlation and other related operations. 

To complete this brief description and definition of the JSS 

computational requirements (emphasizing the data manipulations near 

the input portion of the ROCC), we must be more specific about the 

timing constraints in the system. The computations are organized into 

data frames which are six seconds in length, as shown in Figure 2-3. 

Radar reports enter continuously and asynchronously throughout each 

frame.  Because of the smoothing and extrapolation methods chosen for 

the JSS tracking algorithm, the best and most recent estimates of 

track position are not available until the center of each frame, i.e., 

three seconds into the frame.  Thus we cannot begin to correlate radar 

reports with the track data until half the frame is over.  Furthermore, 

the tracking algorithms demand that all the coarse track-correlations 

be completed within 0.5 second after the end of the frame.  At most, 

we have 3.5 seconds to perform coarse track-correlation—three seconds 

at the end of a given frame, and a half-second into the next frame. 

16 
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A very large portion of the computations performed at the input 

to the ROCC, in computers labelled A and B, consists of coordinate 

conversion and coarse track-correlation.  If some means could be 

found to relieve these burdens, we might expect significant savings 

in computer hardware and a simplification of the remaining computer 

program. As discussed in the next section, a small special-purpose 

satellite processor can perform both functions at very low cost. 

Additional functions could be accommodated by a more elaborate 

version of the satellite processor.  Various options will be described 

in Section IV of this report.  It should be noted that the cost-impact 

discussion in Section V will refer primarily to an "advanced" satellite 

processor which includes the mapping and masking options. 

18 



SECTION III 

THE "BASELINE" SATELLITE PROCESSOR 

Although there are many portions of the JSS problem that may offer 

attractive possibilities for cost reduction through the use of special- 

purpose satellite processors (e.g., in the generation of displays), 

this report will confine its attention to the front end of the ROCC 

computational burden, where the data from the surveillance radars are 

arriving at a high rate. 

Since we intend to examine the cost benefits of satellite processors 

in a later section, we have too many design options at this point in our 

discussion. First, we have choices concerning the processing functions 

to be performed: Should the satellite perform mapping and masking as 

well as track correlation? Is it advisable to have the central computer 

worry about coordinate conversions? Could the satellite take over the 

entire tracking function, rather than just the coarse track-correlation? 

Second, we must decide on the burden to be placed on the JSS software 

programmer: To what extent should we expect the programmer to allocate 

core-memory space, do bookkeeping on data manipulated by the satellite, 

or concern himself with data transfers to and from the satellite? Third, 

we must use judgment in allocating hardware burdens to the satellite: 

How much internal memory should the satellite have? Is the satellite 

to be a fixed machine, or should it be programmable through the central 

computer? What provisions should we make here for input/output control? 

19 



What we shall do is define a "baseline" satellite processor, 

carry out a relatively detailed design for the baseline, and make 

cost estimates for the baseline. Then, in a later section of the 

report, we shall consider in less detail some of the more important 

design options. 

The definition or list of requirements for our baseline satellite 

processor is presented in Table 3-1.  These requirements will result 

in a special-purpose device which performs a reasonably complex set of 

tasks, which places a minimum burden on the hardware and software for 

the central computer, and which is likely to be relatively expensive 

(since minimum satellite cost is not a primary goal, and the other 

requirements will tend to maximize the hardware complexity of the 

device).  As we shall see, the baseline satellite is still not very 

costly, despite these ground rules. 

Basic Design Approach 

Our general approach to the design of the satellite processor can 

be described with the aid of Figure 3-1.  Radar data enter the central 

computer, at a maximum rate of 8500 reports per six seconds.  Upon 

input, they are temporarily stored in buffer memory (not shown) and 

subjected to masking and mapping operations which limit the remaining 

data to a maximum rate of 3600 reports per six seconds.  The central 

computer then sends each of the 3600 reports to the satellite processor, 

where they are stored in a RADAR REPORT TABLE. At this point, each 

report is represented by three 16-bit words, packed as follows: 

20 



Functions; 

1. Coordinate conversion of all radar data not mapped or 

masked. 

2. Coarse track-association: Each radar report will be 

"tagged" to show whether or not 

it lies within 12 NM of any 

track; the tag will not indicate 

which track(s) the report 

correlated with. 

Programming Burden for the JSS Software: The satellite should be 

as simple to use as possible.  The processor should require no 

bookkeeping by the programmer, and should not interrupt the 

central computer at an excessively high rate.  The satellite 

should not require any significant increase in core memory 

in the central computer. 

Hardware Tradeoffs in the Satellite: No attempt should be made to 

economize on the satellite's hardware at the expense of compli- 

cating either the interfaces or the JSS computer hardware/soft- 

ware. 

Satellite Flexibility:  The processor will be a fixed-program 

machine whose program is stored in a Read-Only-Memory (ROM). 

Site constants, however, will be read from the central computer 

whenever desired. 

Input/Output: The satellite will use one standard bi-directional 

input/output channel of the central computer. Several control 

lines will be used to indicate status of the data passing over 

the single channel. 

Table 3-1.  "Baseline" Satellite Processor Requirements. 

21 
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TAG TO INDICATE 
COARSE CORRELATION 

Assuming the bi-directional input/output channel to be a 16-bit data 

bus, there are at most 3 x 3600 16-bit radar-report words delivered to 

the satellite processor's memory every six seconds. These data arrive 

at the satellite more or less continuously throughout any given six- 

second frame. 

About three seconds after each frame begins, the JSS programmer 

must arrange to send the appropriate track data to the satellite.  It 

is assumed that the central computer maintains a TRACK TABLE which 

contains up to 200 pairs of X- and Y-coordinates, representing the 

estimated position of each track at the center of the corresponding 

frame; the table is updated every frame. Using the same input/output 

channel, the contents of the central TRACK TABLE are transferred to a 

similar TRACK TABLE in the satellite processor's memory. 

At infrequent intervals, on demand, the nine constants K. through 

K_ for each individual radar site are transferred over the channel 

and stored in the processor.  In some cases the site may require more 
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frequent updating, because the JSS might include mobile (balloon-borne) 

radars. 

At the beginning of each six-second frame, the raw radar reports 

for that frame begin flowing over the channel and are stored sequentially 

in the RADAR REPORT TABLE. The satellite's microprocessor immediately 

starts the execution of the coordinate-conversion equations; when it has 

completed the conversion for any given three-word report, it replaces 

the original R, 9, and H values with the corresponding values of X, Y, 

and H. During the first three seconds of the frame, the satellite can 

perform coordinate conversions, but cannot begin coarse track-correlation 

because the updated track coordinates are not yet available. 

In the middle of the frame, the satellite's TRACK TABLE is loaded 

with fresh data from the central computer, and the microprocessor can 

begin to operate on the coordinate-converted data.  It starts at the 

top of the RADAR REPORT TABLE, and loads a pair of X- and Y-coordinates 

into one of its internal registers. Then it sequentially tests that 

report against every pair of track parameters from the TRACK TABLE; 

if the vector distance between the report and any given track is less 

than 12 NM, the microprocessor adds a "tag" (e.g., sets the low-order bit) 

in the first word of the stored report to indicate coarse correlation 

between the report and the track. To complete the coarse-correlation 

process for the entire frame, the microprocessor must test up to 3600 

radar reports against 200 target tracks. 
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Shortly after the end of the frame, the satellite has finished 

its coarse track-correlation tests. The RADAR REPORT TABLE will now 

contain up to 3600 three-word reports whose coordinates have been 

converted, and which have been "tagged" for coarse correlation. The 

entire RADAR REPORT TABLE is then transferred over the input/output 

channel and loaded sequentially into an identical table in the central 

computer's memory, to be used by the JSS programmer for display and 

final track correlation. 

The various operations described above require two types of inter- 

leaving.  First, the microprocessor must work its way down the RADAR 

REPORT TABLE, executing the coordinate-conversion equations for each 

report; halfway through the frame, it must simultaneously perform 

coarse track-correlations beginning with the top of the table.  Several 

internal counters are needed to remember how many raw reports have been 

received from the central computer, how many have had their coordinates 

converted, and how many have been tested for coarse track-correlation. 

Second, the input/output channel must be shared by four types of data: 

site constants (sent infrequently to the satellite), raw radar reports 

(sent continuously to the satellite on a one-at-a-time basis), track 

data (sent quickly in a single block to the satellite), and processed 

radar data (sent quickly in a single block back to the central computer) 

JSS Programming Considerations 

From the standpoint of the JSS software programmer, the satellite 

can be considered almost as a subroutine. The programmer must remember 
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to do a few things in the correct order, hut these should not cause him 

much trouble. 

First, he must arrange to send over the site constants as frequently 

as the radar situation requires; this might be done once per day for 

fixed sites. The programmer loads a single table with all the constants 

for all the sites (nine constants for up to 25 radars), sends a signal 

to the satellite indicating that site data are on their way, and executes 

a Direct Memory Access (DMA) transfer of the entire table to the satellite. 

Next, he must send the raw radar reports to the satellite.  Since 

he must already have internal buffer tables to accomplish the mapping 

and masking operations, this transfer is merely a matter of reading the 

appropriate data from the tables in sequential order.  The radar reports 

in the central computer contain some data of no interest to the satellite— 

e.g., the time associated with the radar detection, or various status 

indicators—and the programmer must extract only the range, azimuth, 

height, and site identification and pack them into three sequential 16-bit 

words.  Once packed, he may send the words in blocks or one at a time, 

and it is not necessary for him to count the number of reports he has 

sent.  Whenever he sends a radar report, he must first set a control line 

which allows the satellite to interpret the incoming data as radar infor- 

mation. 

During the collection of radar data, some other portion of the 

central computing facility is preparing the latest estimate of track 

positions for each target identified by the system. These estimates 
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must be loaded into a single TRACK TABLE, and the entire table must be 

transferred to the satellite at about the middle of the frame. The 

programmer must set an appropriate control line to inform the satellite. 

Finally, shortly after the beginning of each frame, the JSS pro- 

grammer must request a DMA transfer of the processed data from the 

satellite into whatever table locations he wishes in the central 

computer's memory.  The programmer can rely on the completion of the 

transfer before 0.5 second into the frame, or he may test a control 

line from the satellite. 

The satellite requires a "start of frame" signal from the central 

computer; if this is not provided by the system hardware, it may be 

necessary for the programmer to set a control line at the proper time. 

In some computers (e.g., the larger IBM computers), a DMA transfer 

of data does not interfere with the operation of the central processing 

unit after the transfer has begun.  In most other machines, each item 

of data transferred over the input/output channel "steals" a cycle from 

the central processor, and slows it down. DMA transfers at the highest 

data rate can therefore stop the entire computer for the duration of 

the data block.  Since the complete shutdown of the computer for DMA 

transfers to and from the satellite processor would represent an awkward 

constraint for the JSS programmer, the satellite timing has been designed 

to ensure relatively slow DMA transfers.  Consequently, the programmer 

need not worry about such transfers, and can execute them any time he 

wishes. 
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Computations Within the Satellite Processor 

Since the baseline processor is expected to perform a rather wide 

variety of computations, it has been configured as a general-purpose 

computer with some auxiliary special-purpose hardware. The basic com- 

putational arrangement is shown in Figure 3-2. 

The heart of the satellite is a 16-bit microprocessor.  For the 

baseline design, a relatively fast computer is needed, and we have 

chosen to implement the CPU in the form of four four-bit "slices" 

which can operate at a clock rate of 5 MHz if desired . Program 

instructions are 24 bits long (containing 9-bit micro-instructions), 

and the computer can manipulate 16-bit data words. Although the 

basic computer can add, subtract, shift, and perform many logical 

operations, it does not have hard-wired multiply or divide instructions; 

these must be implemented as subroutines. The microprocessor includes 

16 general-purpose registers which may be used for indirect addressing, 

and which can be incremented or decremented automatically as part of 

some other operation such as fetching data from memory. 

The most sophisticated computations required of the satellite 

involve the evaluation of the coordinate-transformation equations shown 

in Section II. The transformations call for the calculation of two 

sines, two cosines, a square root, and several multiplications and 

additions. All arithmetic is performed in fixed point.  As described 

The specific element is the AM2901 bipolar four-bit slice processor 
manufactured by Advanced Micro Devices, Inc. 
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in Appendix A, four subroutines are used for multiplication, sine, 

cosine, and square root.  It is estimated that the total coordinate- 

conversion portion of the program consumes 124 instructions and uses 

36 stored constants.  Since the microprocessor handles instructions 

and constants (data) differently, they are stored in two different 

read-only memories. 

The second type of computation involves the tests for coarse 

track-correlation. To test a given radar report against the 200 

tracks, the microprocessor first fetches the X- and Y-coordinates of 

the radar report and loads them into general-purpose registers. Then 

it begins testing against the stored track data.  In one instruction 

it fetches the X-coordinate of the track and subtracts it from the 

X-value of the radar report; in the next instruction it sends the 

resulting value of AX to the Vector Test Unit shown in Figure 3-2. 

In the following two instructions it fetches, subtracts, and delivers 

AY to the Vector Test Unit.  Since the fetch instructions automatically 

increment the fetch-address registers, only six computer cycles are 

required to produce AX and AY (two are need for counting and jumping). 

The Vector Test Unit is a simple special-purpose device containing 

some logic elements and a read-only memory. Its function is to rapidly 

implement the following test: 

T =/(AX)2 + (AY)2 

If T j< 12 NM, then the radar report is 
considered to be correlated with the 
track. 
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The logic elements merely examine the high-order bits of AX; if any 

of these bits are set, then T will clearly fail the test.  Similarly, 

the high-order bits of AY are tested.  If neither AX nor AY are so 

large as to fail this crude test, then AX and AY are each used as five- 

bit addresses for a read-only memory.  For any given pair of AX and 

AY values, the memory contains either a zero or a one, indicating the 

failing or passing of the coarse track-correlation test.  Thus the 

12-NM vector test can be hard-wired with a relatively small number of 

digital logic chips, and this burden can be removed from the micro- 

processor. 

The microprocessor must perform many other functions, each of 

which is almost trivial.  As examples, it must participate in the 

storing and reading of data transferred during DMA interchanges, and 

must maintain eight of its general-purpose registers for keeping 

the last radar data address entered, the current track data address, 

the last track data address, etc.  The details of the microprocessor 

program needed to perform these miscellaneous operations have not been 

worked out, but there appears to be more than adequate capacity in the 

256-step program memory provided in the baseline design:  If the 

coordinate-conversion program uses 124 steps, and the coarse track- 

correlation uses about 20 steps, then about 112 steps are left for 

miscellaneous tasks. 

Satellite Timing Estimates 

As discussed in Appendix A, it is estimated that the coordinate 

conversion of one raw radar report will require about 800 machine cycles. 
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If we operate the satellite-processor clock at 3 MHz (a value comfortably 

below the manufacturer's specified maximum clock rate of 5 MHz), then 

one conversion will consume about 267 microseconds. For a maximum of 

3600 radar reports per frame, coordinate conversion will require a 

total of 

3600 x 267 microseconds = 0.96 seconds. 

Appendix A also estimates that the attempt to correlate one radar 

report with up to 200 tracks will require about 1200 machine cycles, 

or 400 microseconds. At the upper limit of 3600 reports, the total 

time required for coarse track-correlation is 1.44 seconds. 

Ignoring site data, we must transfer 

3 x 3600 16-bit words to the satellite (radar reports) 
3 x 3600 16-bit words from the satellite ("tagged" radar reports) 
2 x 200 16-bit words to the satellite (track data) 

or a total of 22,000 words every six seconds.  If we assume that the 

transfer of each word will interrupt the microprocessor for three 

machine cyles, then the total time expended in transfers of data is 

22 milliseconds. Thus data transfers impose a negligible burden on 

the microprocessor (and the central computer as well). 

As shown in Figure 3-3, the process of coordinate transformation 

can be carried out through most of the six-second frame, but the coarse 

track-correlations must be done only during the last three seconds of 

the frame; therefore, the second half of the frame is the busiest. 

According to the estimates given above, the microprocessor will take 
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1.44 seconds to perform all the coarse track-correlations, and 0.96/2 

seconds to do half of the coordinate conversions, for a total of about 

1.92 seconds of CPU capacity, leaving another 1.08 seconds for miscel- 

laneous and overhead functions during the last half of each six-second 

frame.  These estimates assume that the radar data entering the system 

are uniformly distributed in time, an assumption which should be nearly 

correct when many independent radars are providing the data.  In the 

worse case, where all of the data in a frame enter during the last three 

seconds, the microprocessor will take 1.96 seconds for correlation and 

0.96 second for coordinate conversion, or a total of 2.40 seconds 

(leaving 0.6 second for miscellaneous chores).  We may conclude that 

a single microprocessor can accommodate the satellite's needs, even 

for the most unfavorable distribution of raw radar data. 

Overall Design of Baseline Satellite Processor 

Having discussed the various major items in the processor's design, 

we may now consider the overall block diagrams of the device.  Figure 

3-4 shows the microprocessor and its various memories, and Figure 3-5 

shows the ten control functions connecting the central computer to the 

satellite. 

The four microprocessor "slices" do not actually constitute a 

computer, but must be supplemented by a look-ahead "fast carry" chip 

that services the four CPU slices, two program-sequencer chips, three 

read-only memories containing 256 24-bit program instructions, and a 

24-bit latch to hold the last program instruction.  Hence, we need 

eleven chips to form the computer. 
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A large fraction of the satellite's hardware (79 LSI packages or 

chips out of a total of 111) is devoted to digital memories. The random- 

access memory used to store the radar reports requires 50 LSI chips 

capable of holding over 170,000 bits; however, the organization of 

the satellite permits this memory to be relatively slow. The present 

line of commercial slow random-access memories offers 4096 bits of 

storage in a single chip; improved memories giving 16,384 bits on 

one chip will be available soon, promising a dramatic reduction in 

the size and cost of the overall unit.  Sixteen integrated-circuit 

packages are required for the fast random-access memory used to hold 

the 200 pairs of track coordinates. 

The ten control functions between the satellite and the central 

computer are used as follows: 

1. Computer clock to satellite. 

2. DMA request to satellite. 

3. DMA acknowledge to computer. 

4. Beginning-of-frame signal to satellite. 

5. Signal from computer to indicate whether the input/output 
channel is being used as input or output. 

6. Signal to the central computer indicating that the processed 
data are ready for transfer back to the computer. 

7. Signal to satellite indicating the end of the track data. 

8. Site data 

Q      k H     \  Signals from the computer indicating the 
I       type of data being sent over the channel. 

10.  Radar data 
J 

37 



Obviously, these ten control functions can be encoded to reduce the 

number of physical control lines between the computer and the satellite, 

or to accommodate computer constraints.  Control function No. 6 can be 

eliminated if the JSS programmer is willing to wait the full 0.5 second 

after the start of a frame to begin his manipulations of the processed 

data. 

These control functions permit a very flexible approach to data 

transfer, and relax many constraints on the JSS programmer that might 

ordinarily be imposed.  For example, control function No. 7 (end of 

track data) allows the programmer to send the track data either in a 

block or as a separate set of transfers; furthermore, he can finish 

his track transfer at any reasonable but arbitrary time, and need not 

send the entire maximum list of 200 track coordinates if less than 200 

are given.  It is assumed that the JSS programmer will send over the 

entire list of 9 x 25 site constants whenever the site data are to be 

changed. 

As mentioned above, the microprocessor uses eight of its internal 

general-purpose registers as address registers to control the various 

interleaved sequences of coordinate-conversion and coarse track- 

correlation computations. Another problem to be accommodated is the 

overlap in the processing for successive frames; when data from the 

previous frame are being returned to the central computer, new radar 

data are being sent to the satellite.  Appendix B contains a somewhat 

more detailed description of the use of the reference address registers, 

as well as comments on DMA operation. 
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The block labelled "logic box" in Figure 3-5 is implemented with a 

programmed logic array plus associated small-scale integrated components. 

Its purpose is to generate the appropriate program step or input/output 

control signals corresponding to the state of the program and the input/ 

output control lines.  It causes the program sequencer to increment 

until a program "jump" condition or a DMA requirement is encountered. 

When responding to a DMA request, the request is not relayed to the 

control logic until those times in the program when it is convenient 

for the microprocessor to react, i.e., generally not during a subroutine. 

A flip-flop then transfers this request to the control logic which acts 

according to the status on the input control lines in directing the 

sequencer to the appropriate program step. When this occurs (at the 

internal clock rate), the satellite processor issues a DMA acknowledge 

signal and accepts the clock signal from the computer. The DMA condition 

continues until the DMA Request control line is returned to normal, at 

which time the normal operation of the processor resumes. 

Hardware Cost Estimates for the Baseline Processor 

As discussed previously, the satellite baseline processor could 

be fabricated using approximately 111 integrated-circuit packages. 

Of these, 11 are associated with the implementation of a general-purpose 

microcomputer, 79 are various types of random-access and read-only 

digital memories, and the remainder are miscellaneous logic circuits. 

Although we have considered all of the essential elements and 

many of the details of the baseline processor, we have not attempted 
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to carry out a fully complete design.  Our primary purpose in this study 

is to estimate the characteristics and impacts of such a processor, and 

a totally finished design is not necessary to meet these goals.  In 

addition, the JSS itself has not been specified in any great detail at 

the present time, and even the types of computers have not been selected; 

the principal uncertainty in our satellite design lies in the input/output 

and interface considerations, and they cannot be addressed explicitly 

until the central computer has been chosen. 

Thus, the estimates of the cost of the satellite processor are 

not exactly correct, but they are believed to be accurate to within 

a few hundred dollars. 

Table 3-2 presents a list of integrated-circuit components, 

specified by manufacturer's part number except for some minor items, 

for the baseline processor.  The costs are given for unit quantities, 

and take no advantage of volume purchase.  (It should be noted that a 

10 to 30 percent discount could be obtained if the 111 LSI packages 

for just one satellite were bought through a single vendor.) 

The cost of assembling these components onto boards, installing 

them into a suitable box with the necessary connectors, switches, 

lights, power supplies, etc., and a minimum of testing, can be estimated 

on the basis of between six and ten dollars per integrated circuit. 

Six dollars per integrated circuit is often quoted in industry for this 

cost; we will use eight dollars to be conservative.  The total cost for 

assembly, installation, and testing is therefore estimated to be $890. 
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MICROPROCESSOR: 

CPU AM2901 4 ea @ $ 60.00 $ 240 

Sequencer AM2909 2 ea e 42.12 84 

Fast Carry AM2902 1 ea e 5.67 6 

Latch N74S174 4 ea e 7.69 31 

ROMS: 

Program SIG 8204 3 ea i 21.00 63 

Constants 82S123 4 ea @ 6.45 26 

Correlation 82S123 2 ea e 6.45 13 

RAMS: 

Target Data SIG 8107B-4 50 ea @ 16.00 800 

Track Data 82S11 16 ea 8 45.00 720 

Site Data AM2971 4 ea e 20.00 80 

ASSOC. MSI LOGIC: 10 ea 100 

I/O CIRCUITS: 10 ea 100 

OSCILLATOR: 1 ea 

kages 

15 

111 pac $ 2277 

Lumped estimates are given above for miscellaneous 
MSI digital logic and for the input/output circuits. 

Table 3-2.  Cost Estimates for Integrated-Circuit Components. 
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The total cost for components and construction of the baseline 

satellite processor is estimated as follows: 

Component Cost    $ 2277 

Assembly Cost       890 

Total  $ 3167 

The design and development costs to take the baseline from its 

present status to a completely operational prototype should not take 

more than a few weeks of engineering time, once the detailed character- 

istics of the central computer interface have been specified. 

The baseline processor has not, of course, actually been fabricated. 

We can approximate its physical form by mounting 111 integrated circuits 

on a standard printed-circuit board measuring 17 x 8 inches.  Figure 3-6 

is a photograph of such a simulated device.  In the JSS environment, it 

could be incorporated in other digital devices having spare slots (e.g., 

the central computer) or a separate box with power supplies could be 

devised. 

Programming and Testing the Satellite Processor 

In some applications, the programming of a microprocessor can 

represent a costly four-fold chore—the basic program is first developed 

and tested on a large computer using a high-order language such as FORTRAN; 

the symbolic code is next converted to microprocessor machine instructions 

using a "cross-compiler"; the machine-language program is then tested on 

an "emulator"; and finally the program is loaded into a PROM, and the 

whole assembly tested in actual operation.  It can be argued that this 
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process is much more expensive per finished instruction than the 

equivalent operation on a conventional large-scale computer. 

The program for the satellite can be developed without most of 

these time-consuming steps, because the basic processor functions are 

so simple.  By using certain efficient testing techniques, the entire 

procedure can be completed in a few man-weeks at a correspondingly 

low cost. 

As described earlier, the complete program occupies less than 

256 machine-language instructions.  A program of this size can be 

written directly in machine language by one knowledgeable person in 

a day or two, on the basis of the brief programming analyses presented 

here and in Appendix A.  It should not be necessary to deal with higher- 

order languages, or even an assembly language (although the latter would 

be convenient). 

Testing of the satellite processor and its program can proceed 

simultaneously, in two distinct phases:  laboratory or "bench" tests, 

and operational tests using the central computer as the principal tool 

for exploration. These two phases and the test methods employed in 

each are outlined below.  There should be no need to utilize an "emulator" 

or any similar indirect techniques. 

We assume that the satellite processor is physically complete, and 

that the operational program has been written and loaded into the PROM 

associated with the satellite's microprocessor.  We also assume that 

the laboratory has the standard equipment to load PROMs, using paper-tape 
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input; the procedure is to take a hand-written assembly-language program, 

punch a paper-tape version of the program, load the program into the 

PROM, and physically insert the PROM into the satellite. 

In the laboratory testing phase, the traditional approaches to 

debugging digital hardware can first be employed on the satellite 

processor, to assure ourselves that the presence of certain signals 

on the control leads will cause the desired logical actions within the 

unit. Next, some embryonic test programs (consisting perhaps of 10 or 

20 machine-language instructions) are loaded into the PROM, to cause 

the microprocessor to transfer data from one portion of the satellite's 

memory to another; these transfers will be performed repetitively, and 

the movement and arrival of stored data can be observed with an oscillo- 

scope.  When these simple operations can be executed without error, the 

full program is loaded into the satellite, and a few of the control 

lines (e.g., the "frame sync" line) can be pulsed with external test 

equipment at the proper rates.  The satellite should cycle through its 

program, and exhibit specific actions at certain times within the cycle, 

thereby giving some general indication that the unit is functioning as 

expected.  The principal purpose of the laboratory phase is discover 

any hardware-oriented errors. 

In the second or operational phase of testing, the satellite is 

connected into the central computer using all of the interfaces planned 

for full-scale operation. Then a series of evolutionary tests are 

arranged, where each test calls for the writing of a simple program 
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(in high-order language) for the central computer, and either a short 

assembly-language program or the full-scale program for the satellite. 

An example set of tests might proceed as follows. The central 

computer would first be programmed to send the "track" table to the 

satellite once per frame, and the satellite would be programmed to 

receive the "track" table and store it in its corresponding RAM; it 

should be possible to write and load these two short test programs in 

less than one hour.  In execution, the behavior of the control lines 

and the interfaces, and the movement of the data from computer to 

satellite can be observed directly with the proper test equipment, 

and any problems should be simple to diagnose.  Similar separate tests 

can verify the performance of the commands to move target data and site 

data to the satellite, and tagged target data from the satellite to 

the computer.  Next, a series of tests of gradually increasing complexity 

can be used to test the overlapped transfers of data back and forth, 

the coordinate-conversion portion of the processing, the track-correlation 

portion, and finally the combined operation of all processes. 

It is expected that ten to fifteen short test programs would be 

written during the second phase; and, if the operational satellite 

program initially contains several errors (which is likely), the full 

program will have to be laboriously re-written many times before it is 

completely satisfactory.  It is important to note, however, that the 

test programs are individually trivial, and the full operational program 

can be modified in a few hours. 
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Using the methods outlined above, we believe that a single person 

could comfortably program and test the baseline satellite processor in 

a few weeks. This person would have to be familiar with the central 

computer's software, as well as knowledgeable in both the hardware 

and software aspects of the satellite's microprocessor and its inter- 

faces . 
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SECTION IV 

OTHER SATELLITE PROCESSOR OPTIONS 

The previous section has described a "baseline" satellite 

processor for the JSS, designed to perform the functions of coordinate 

conversion and coarse track-correlation. Both the functions and the 

design of the baseline device were selected rather arbitrarily, for 

the purpose of presenting a specific example in enough detail to 

make the conclusions (with regard to programming and cost) credible. 

In this section we will discuss a series of design options for a JSS 

satellite processor. We will not attempt to consider all of the 

possible options, nor to give detailed information about any given 

version; instead, we shall merely outline the more important 

characteristics of some options, and rely on the reader to make the 

necessary extrapolations in complexity and cost with respect to the 

baseline satellite. 

First we shall discuss a few variations on processors which 

perform essentially the same functions as the baseline satellite. 

Then we shall suggest other additional functions that might be 

performed by a suitable processor.  As before, we shall confine 

ourselves to those operations near the front end of the JSS. 

Minor Variations on the Baseline Satellite Processor 

The baseline processor could be implemented in the form of two 

separate processors, one devoted to coordinate transformations, 
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and the other dedicated to coarse track-correlation.  Presumably 

each device would employ its own micro-processor and would incorporate 

its own internal memory; each would need a bi-directional interface 

with the central computer.  Although the equipment would be more 

costly than the baseline device, the two units would have greater 

computational capacity, and therefore could handle a larger data 

load if desired. 

A simpler satellite could be devised which relied on the central 

computer for storage of the raw radar data; memory requirements in 

the satellite would thus be greatly reduced.  In this version, the 

satellite would sit idle until the track data could be transferred 

from the central computer (about three seconds after the start of the 

frame).  Then each raw radar detection would be sent to the satellite, 

processed, and returned to the computer on a one-at-a-time basis; 

there would be no need for the satellite to "remember" more than one 

radar detection.  The penalty for this simplicity is a small amount 

of additional difficulty in using the satellite.  It would be necessary 

for the JSS programmer to arrange the data transfers with more care, 

and to perform some minor bookkeeping on the number of radar data 

points.  A secondary variation on this one-at-a-time technique is 

to utilize a small buffer memory for radar data in the satellite 

(capable of storing, say, 100 detections); then the data transfers 

could be performed more easily by the JSS programmer, but he would 

have to expend somewhat more care in the bookkeeping portion of his 

responsibilities. 
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Increasing the Capability of the Satellite Processor 

Several embellishments on the basic baseline processor are 

discussed below. 

Additional Correlation Data 

The baseline processor accomplishes the coarse track-correlation 

task by adding a "tag" to the radar data; presence of the tag indicates 

that the radar detection was within 12 NM of at least one of the target 

tracks.  With a relatively small addition to the satellite's hardware, 

it would be possible to give the JSS central computer more information 

about the correlations.  In particular, the satellite could identify 

which track(s) correlated with each radar detection, and could also 

give the vector distance between the detection and the track.  If the 

tracking algorithms used in the JSS operate on the basis that no more 

than one radar detection should be associated with each track, and/or 

that each track should be associated with no more than one detection, 

then the satellite could perform these decisions and selections prior 

to sending the tagged data back to the central computer.  These 

burdens could be rather easily accommodated by a satellite processor, 

and could lift a considerable computational load from the JSS computer. 

Mapping and Masking 

One of the important functions of the central computer is to 

limit the amount of incoming data, so that subsequent processing will 

not be overtaxed.  When the input data loads are too high, the JSS 

rejects certain data on the basis of masking and mapping operations, 
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which are sets of tests dependent upon the geographical position 

and the type of each radar detection. The raw radar data can enter 

the system at a total rate as high as 8500 detections in any given 

six-second period; the mapping and masking procedures must place an 

absolute upper bound of 3600 detections in any given six-second frame. 

It is certainly feasible for a satellite processor to perform these 

operations, and thereby relieve the central computer from any direct 

interaction with the raw radar data. A separate satellite could be 

designed to handle the mapping and masking tasks, or these functions 

could be incorporated into the same device which executes coordinate 

conversion and coarse track-correlation on the radar data.  Since all 

of these operations require the shuttling back and forth of fairly 

large quantities of radar data, it seems more efficient (from the 

JSS programmer's point of view) to combine all of the functions into 

one device. 

The decision rules upon which mapping and masking are implemented 

are fairly complex, and will undoubtedly be revised in accordance 

with practical field experience.  Generally, they involve two main 

elements.  First, geographical regions are defined, and each data 

point is tested to determine whether it lies within the given region; 

each region is described in terms of two ranges and two azimuths, 

and its location and size can be adjusted by the JSS operators. 

Typically there will be many such regions, in areas of the total JSS 

coverage where target traffic may be heavy but not particularly 
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interesting (e.g., near an airport).  Second, the tests are dependent 

in a complicated way upon the type of radar data under examination. 

For example, data may be identified as a "skin" radar report, an 

IFF report, a radar detection with or without height information, 

or one of a class of special synthetic test targets. 

None of the operations described above are difficult to execute, 

and are quite appropriate for a fixed-point arithmetic unit of modest 

word size—i.e., they are well suited to implementation on a micro- 

processor.  However, the decision rules are likely to change during 

the development and exercise of the JSS, and it would not be desirable 

to produce a satellite processor whose internal software could not 

be changed easily. One solution to this problem of software flexi- 

bility is to include the facility for storing the satellite's program 

in the central computer, and reading that program into the satellite's 

temporary program storage from time to time.  In this fashion, the 

JSS programmer would have complete control over the particular 

decision algorithms being executed in the satellite, and could change 

them whenever he wished. 

Unpacking 

The raw radar data entering the JSS contain information that is 

not directly of interest to the baseline satellite processor.  For 

example, the data include the time at which the detection or report 

was made, and various status indicators.  For the baseline design, 

the JSS programmer was expected to sort out and "unpack" the raw data, 
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and rearrange only the pertinent information into a particular 

format (e.g., three 16-bit words).  Later, after these data had 

been processed by the satellite and returned to the central computer, 

the JSS programmer was expected to associate each processed report 

with its corresponding auxiliary information.  Although these JSS 

programmer responsibilities are very simple, even they can be 

eliminated by a suitable change to the baseline satellite design. 

The satellite could be configured to accept truly "raw" data 

from the radar sites, without requiring any changes in format or 

any attention whatsoever from the JSS programmer.  The satellite 

could take responsibility for sorting out all the auxiliary infor- 

mation, re-formatting internally where desirable, and could then 

transfer all the data back into the central computer's memory after 

the mapping, masking, coordinate conversions, and coarse track- 

correlations had been completed. 
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SECTION V 

COST IMPACT ON THE JSS SYSTEM 

Our principal motive in studying "satellite" processors as applied 

to JSS has been a significant reduction in system costs.  It is unfor- 

tunately true that, while specific hardware designs for special-purpose 

devices can be developed easily, it is extremely difficult to assess 

the quantitative savings in cost which these devices might allow. 

We begin by noting that the cost of the baseline satellite processor 

is negligible in comparison with the cost of the entire JSS ($5000 com- 

ponent cost plus a relatively small development cost for the satellite, 

versus an estimated cost of several millions for JSS equipment, software, 

and integration).  Other more elaborate versions of satellite processors 

which include, for example, the ability to perform masking and mapping 

will require more components and involve more development; nevertheless, 

the total cost of even an advanced satellite can be neglected. 

There are many contributors to the overall cost of a large system: 

hardware, software, testing, documentation, maintenance, training, 

spares, etc.  It is well beyond the scope of this report to consider 

any but the first two items.  We can look for hardware savings from the 

satellite-processor, in terms of reducing the number of computers in 

the system or through a reduction in the size of the computer(s). 

We might anticipate software savings, because the use of the satellite- 

processor would "free up" a relatively large portion of one or more 

computers, thereby relaxing some of the constraints on optimization of 
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real-time programs. Or we could argue for both hardware and software 

savings simultaneously. As we shall see, it will be difficult enough 

to quantify savings for either hardware or software alone, and we can 

only speculate on the magnitude of any combined advantages. 

Let us begin by considering the possibility of hardware savings. 

Our task would be made immensely easier if the initial system configura- 

tion (before the introduction of a satellite processor) has already been 

subdivided into relatively independent computers; if we can eliminate 

one or more of these computers by adding a satellite, then the hardware 

savings can be directly attributed to the processor.  In the case of 

JSS this process is blurred because the configuration of the central 

computing facility for the various ROCC's has not yet been finalized, 

and we are forced to employ our own judgement or the informal estimates 

of industrial contractors. 

Rather early in the history of the JSS program, MITRE generated 

several different configuration concepts in the course of its own 

internal analyses.  One of these configurations was shown in Figure 2-2; 

it has no special merit, but at the time it did seem to be one reasonable 

approach to the design of a ROCC.  Each of the computers shown in Figure 

2-2 is a "medium scale" computer, roughly in the same class with the 

Hughes H5118M general-purpose digital computer. 

The H5118M computer is a modular, 18-bit, binary, parallel, syn- 

chronous system intended for real-time command and control applications. 

It can execute a fixed-point addition in 2.0 microseconds and a fixed- 

point multiplication in 4.6 microseconds, and its memory can be expanded 
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to a maximum of 131,000 words. The cost for an H5118M with dual 

processors and full memory lies between $300,000 and $400,000. On 

this basis, the total cost for the computers shown in Figure 2-2 is 

nearly two million dollars, not including the additional computers 

required for redundancy and testing. 

If the baseline satellite processor (which performs coordinate 

conversion and coarse-track correlation) were used with this system 

configuration, then one of the two computers at the input end could 

be eliminated. The remaining input computer would handle the multiple- 

radar data, perform the masking and mapping operations, communicate 

with the satellite processor, and interface with the rest of the system. 

Thus the hardware savings could be greater than $300,000. 

If an "advanced" satellite processor, capable of performing the 

masking and mapping operations as well as coordinate conversion and 

coarse-track correlation, were used then both medium-scale input 

computers could be eliminated and replaced by a single mini-computer 

as shown in Figure 5-1. The mini-computer's functions would be merely 

to input the raw data from the multiple radars, communicate with the 

satellite processor, and interface with the remainder of the system. 

The hardware savings could be greater than $600,000 in this case. 

The previous discussion was based on the initial configuration shown 

in Figure 2-2, with the assumption that both of the input computers 

were of the "medium scale" class. Later studies by MITRE and industrial 

contractors have suggested that a somewhat smaller set of computers 
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might suffice for the ROCC; some estimates have even suggested that 

only two "medium scale" computers would be adequate for all the required 

functions. The straightforward substitution of one satellite processor 

for one or two computers is not valid in these cases, since each com- 

puter is being utilized for many functions besides track-correlation 

and coordinate conversion. Unless we can argue that the introduction 

of a satellite processor will actually eliminate one or more computers, 

or will permit us to perform the same job with a smaller computer, our 

claims for hardware cost savings are weakened.  The example above in 

which we could save over $600,000 probably represents an extreme position. 

The use of special-purpose hardware to reduce the cost of software 

development is a controversial subject at best. Many experienced software 

designers do not believe that special hardware offers any potential for 

savings, and bidders for military software contracts are probably not 

inclined to experiment with new approaches at the present time.  The 

controversy seems to focus on two principal assertions by advocates of 

the "conventional" large-computer approach: First, they suspect that 

there are large hidden costs associated with the specification, design, 

programming (of the special devices), debugging, testing, integration, 

maintenance, and modification of special hardware.  Second, they point 

to significant recent improvements in the art of software design—"top- 

down" and "structured" programming techniques, primarily—which offer 

the same organizational benefits of careful discipline and partitioning 

that have been employed in the hardware-design field for decades. 
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Resolution of the general controversy is well beyond the scope of 

this document.  By suitably restricting our assumptions for the particular 

case at hand, however, we may gain some insight into the problem. Let 

us assume that the system designer has already studied the system require- 

ments and has decided to implement the system in the form of a single 

central computer, without any satellite processors. Further, let us 

suppose that he has already chosen a computer which is large enough and 

fast enough to do the entire job.  Finally, we imagine that he has per- 

formed studies on algorithms for coordinate conversion, track correlation, 

mapping, and masking, and that he knows exactly what he needs from each 

process by way of accuracy and timing.  Having gone this far, we now 

offer the designer a choice: He may develop the software for his system 

as it stands, or he may add a satellite processor and then develop the 

software. Under these circumstances, will the addition of a satellite 

processor save money in the development of the software? Note that here 

the designer is not free to change his original computer selection. 

It is helpful to consider the processing load placed on the computer 

by the requirements for mapping, masking, coordinate conversion, and 

track correlation.  Without going into detail, we can guess that each 

radar detection entering the system (at an average rate of 1400 reports 

per second) will require five computer instruction-cycles to perform 

the mapping and masking functions; thus about 7000 instructions per 

second would be used for mapping and masking.  Under the assumption 

that our computer uses software subroutines in the calculation of sines, 
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cosines, and square roots, a brief study shows that we might use 68 

instruction-cycles to perform the coordinate conversions on one radar 

report; at an average report rate of 600 per second , the coordinate- 

conversion process will consume about 41,000 instructions per second. 

Estimates for the coarse-track correlation process are complicated 

by the large number of different approaches that might be used in the 

algorithm.  The straightforward approach would test each of the 3600 

reports against each of the 200 tracks, for a total of 720,000 tests. 

To test whether a given radar report is within 12 NM of a given track, 

it is necessary to execute about 12 instructions.  A more efficient 

method would be to first subdivide the whole geographic coverage area 

into "strips" or "blocks", and then sort both the radar reports and 

the tracks into the various sub-areas; in this way we could avoid some 

unnecessary tests.  For example, if we used five "strips", then we 

would need to make only 144,000 tests, at the expense of some additional 

bookkeeping.  With five "strips", a total of about 1,800,000 instructions 

must be executed to perform coarse-correlations on all 3600 reports, 

but these tests must be completed within the last three seconds of each 

frame, for a peak rate of approximately 600,000 instructions per second. 

Other coarse-track algorithms might be devised to reduce the requirements 

on the computer, but it is clear that track-correlation represents a 

heavy processing load. 

* 
After mapping and masking, the "raw" input reports are reduced to 
600 reports per second for subsequent processing. 
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In Section III we discussed the procedures by which the satellite 

processor could be programmed, debugged as a unit, and tested with the 

central computer.  If these procedures are as effective as we hope, 

then the cost associated with the development and testing of the satellite 

processor should be small compared to the total cost of the JSS. Let us 

assume that processor-development costs can be neglected. 

In terms of the assumptions above, our question can now be restated: 

Will the addition of a zero-cost satellite processor (which will probably 

relieve the central computer of performing more than 600,000 instructions 

per second) save money in the development of the software? Potential 

cost-savings in software development will be reflected in the size of 

the computer program, and in the difficulty of writing and testing the 

program.  These two aspects will be discussed below. 

Based on experience with the Back-Up Interceptor Control (BUIC) 

system and other related multiple-radar tracking systems, we estimate 

that the radar-input portion of the JSS software might contain between 

2000 and 3000 instructions (including mapping, masking, and coordinate 

conversion) and that the coarse-correlation software might contain 

1000 instructions. Therefore the size of the overall software system 

will be reduced by perhaps 3000 to 4000 instructions using a satellite 

processor—a reduction of only a few percent to the total program. 

One way to estimate a cost savings is to assign an average cost for 

a single "finished" or "polished" instruction, and multiply this figure 

by 3000 or 4000 instructions.  At (say) $30 per "polished" instruction, 
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the cost-reduction estimate would be $120,000 which, although not 

large in absolute terms, is nevertheless much more than the cost of 

the satellite processor.  The difficulty with this form of estimation 

is that there are too many variables implicit in determining an average 

per-instruction cost, and the final estimates consequently lack credi- 

bility. 

Although quantitative data are sparce, it is generally believed 

that the total cost of a computer program is a strong function of the 

degree to which the computer's capacity is stressed.  This is especially 

true for programs which must operate in real time.  Thus the closer a 

program must operate to the machine-dependent limits imposed by the 

computer's speed and memory, the higher the programming costs; and as 

these limits are approached, the cost increases rapidly.  As examples, 

real-time software is thought to be five times more costly than non- 

real-time software, on the average  , and programs which demand 90 per- 

cent of a computer's speed and memory capacity may cost three times 

T21 
more than routines which utilize only 50 percent of capacity  . 

With this in mind, we may view the satellite processor as a way 

to retreat from the limitations imposed by our choice of a computer— 

to move away from the machine's performance thresholds, and out of the 

high-cost region.  It is easy to imagine that the addition of an advanced 

satellite, which can relieve the JSS computer of up to 600,000 instructions 

per second, might move the software problem from the 90 percent to the 

50 percent region of machine capacity, and we could credit the satellite 
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with reducing software costs by a factor of three, or more than one 

million dollars. 

This kind of cost-saving estimate serves merely to suggest the 

impressive potential of the satellite processor in certain cases.  It 

also shows that such savings are influenced by the choice of the central 

computer:  If the computer is selected to be just barely large enough 

and fast enough for the JSS problem, then the addition of a satellite 

could save perhaps two-thirds of the programming costs; but if the 

computer is initially operating well below its capacity (a more expensive 

computer), then the satellite might not strongly affect the cost of 

writing the software. 

In summary, we have not succeeded in making quantitative estimates 

of the satellite's impact on the cost of the JSS.  Subject to a variety 

of assumptions and constraints, we have argued that a satellite processor 

might save as much as $600,000 in direct hardware savings. With an even 

more restrictive set of assumptions, we estimated software savings of 

more than one million dollars.  These estimates are probably mutually 

exclusive, i.e., the satellite processor would be unlikely to demonstrate 

large savings in both hardware and software simultaneously.  The real 

point of the exercise is to establish the potential for significant 

cost savings far beyond the development cost of the processor. 
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SECTION VI 

CONCLUSIONS 

We believe that special-purpose processors, used in "satellite" 

configurations with a general-purpose computer, can represent a powerful 

way to simplify the overall system architecture, lower the equipment 

costs, make the computer programming easier and less expensive, and 

greatly expedite testing and debugging. 

Satellite processors are especially well suited for mathematically 

simple functions that must be repeated rapidly and often.  The conversion 

of radar reports from polar coordinates to rectangular coordinates is 

one such function; the correlation of radar reports with target tracks 

is another. 

The Joint Surveillance System (JSS) was selected here for study 

because it offers the typical mixture of equipment and computational 

problems found in relatively large data-processing centers.  A "baseline" 

satellite processor, designed to perform coordinate-conversion and track- 

correlation in real time, was worked out in detail to provide a specific 

example in terms of hardware and software complexity, size and cost, 

and interfaces with the central computer. 

The potential cost benefits to JSS will, of course, depend heavily 

on the particular system configuration and on a large number of other 

assumptions, e.g., the manner in which the system tasks are subdivided 

among the various computational elements.  For one set of assumptions, 
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the use of an "advanced" satellite processor (whose total cost, including 

development, is considerably less than $50,000) could result in a net 

savings of nearly one million dollars. 

The processor described in this document has been specialized to 

the JSS requirements, but the general techniques used in its design can 

be applied to other track-while-scan radar surveillance systems.  It 

is likely that similar devices could be equally attractive for use with 

FAA radars, the AWACS airborne surveillance platform, the Conus Over- 

the-Horizon radar, and a variety of tactical radars. 
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APPENDIX A 

ESTIMATES OF MICROPROCESSOR PROGRAM SIZE AND TIMING 

The major tasks to be performed by the microprocessor in the 

"baseline" satellite are the conversion of the raw reports from 

polar coordinates to cartesian coordinates, and the calculation of 

position differences between the radar reports and the target tracks 

(in support of the coarse track-correlation operation). The pro- 

gramming considerations for these two processes are described in 

more detail below: 

Coordinate Conversion 

Given a radar report consisting of a slant-range measurement R, 

an azimuth measurement 8, and a height measurement H, it is desired 

to perform the following calculations to produce the X- and Y-values 

of the report: 

= A2 -  (H-K,)2 

a = 0 - K„ 

Let   ¥ = A    -  (H-^) 

then 

v2 

B = 2a - K 

X - K. + Kc F sina + K, F
2 sing 4   5 6 

Y = K? + Kg F cosa + Kg F
2 cosg 

where L , L ( ••• L are site constants. 
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Since the microprocessor selected for our study does not have 

a hard-wired capability for multiplication, we will use a software 

multiply-routine, and choose algorithms which avoid division. 

The coordinate-conversion program will use four subroutines: 

multiplication, sine, cosine, and square root.  Particular algorithms 

optimized for the microprocessor have not been worked out in detail, 

but we have selected representative methods for performing these 

functions for the purpose of estimation.  The subroutine for multi- 

plication will require about 20 program instructions, and will consume 

about 20 machine cycles during execution.  The sine subroutine is 

based on a four-term power-series expansion; it will require about 

20 program instructions and four constants, and will take about 

170 machine cycles to execute.  The square root subroutine employs 

a combination of table lookup and power-series expansion; its 

program occupies about 30 instruction locations and uses 32 constants, 

and it requires about 40 machine cycles to execute.  Finally, the 

cosine subroutine evaluates the expression 

.•AT-  ••* cos $» + /!- (sin <(>)' 

It requires about 10 program instructions and takes about 70 machine 

cycles to execute.  In summary, the subroutine characteristics are 

shown below: 
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Subroutine Instructions Constants Execution Time 

Multiplication 20 — 20 cycles 

Sine 20 4 170 

Cosine 10 — 70 

Square Root 30 32 40 

80 total 36 total 

Table A-l shows a version of the program that might be suitable 

for the coordinate-conversion manipulations. The program contains 

44 instructions, and requires 768 machine cycles to execute; it also 

2 
requires temporary storage for variables T, F, F , sing, cos3, and 

sina, some or all of which can be accommodated within the available 

16 general-purpose registers in the microprocessor itself. 

For purposes of estimation, we shall assume that the total 

coordinate-conversion program requires 124 program instructions 

(80 for subroutines and 44 for the program itself) and storage for 

36 constants.  If we allow some margin—e.g., to execute various 

shifting operations to avoid the loss of precision with fixed-point 

arithmetic—we may estimate that the overall program would require 

800 machine cycles to complete the coordinate conversion of one radar 

report. 

Coarse Track-Correlation 

As discussed in Section III, the process of coarse track- 

correlation can be implemented through a combination of general 

microprocessor operations and special hard-wired logic operations. 
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The microprocessor is expected to calculate two arithmetic differences 

and deliver them to the hard-wired device. The two values desired 

from the microprocessor are AX and AY, the difference between the 

X-value of the radar report and the X-value of the target position, 

and the corresponding difference for the Y-coordinates of the report 

and the target.  Since the hard-wired logic can perform its function 

in one clock cycle, the timing constraints are set by the micro- 

processor. 

Table A-2 shows a version of the sub-program that might be 

suitable for the calculation of AX and AY, and their delivery to 

the hard-wired logic. 

We have taken advantage of the microprocessor's internal 

registers and their capability for automatic incrementing within an 

instruction.  The principal time-consuming computational loop involves 

six instructions and requires six machine cycles to complete.  Since 

the satellite must test each radar report against as many as 200 

target tracks, we can estimate a maximum of 6 x 200 or 1200 machine 

cycles for the coarse correlation of one radar report. This ignores 

the time required to set up the various microprocessor registers and 

perform other housekeeping functions, but these operations represent 

a very small fraction of the total time used in coarse track-correlation. 
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INST. 
NO. 

INSTRUCTION 
NO. 
OF 
STEPS 

1 FETCH H 1 

2 SUBTRACT Kx 1 

3 STORE IN T 1 

4 MULTIPLY BY T 20 

5 STORE IN T 1 

6 FETCH R 1 

7 MULTIPLY BY R 20 

8 SUBTRACT T 1 

9 CALL SQ ROOT 40 

10 STORE IN F 1 

11 MULTIPLY BY F 20 

12 STORE IN F2 1 

13 FETCH 0 1 

14 SUBTRACT K2 1 

15 STORE IN T 1 

16 MULTIPLY BY 2 1 

17 SUBTRACT K3 1 

18 CALL SINE 170 

19 STORE IN SIN6 1 

20 CALL COSINE 70 

21 STORE IN COSB 1 

22 FETCH T 1 

INST. 
NO. 

INSTRUCTION 
NO. 
OF 
STEPS 

23 CALL SINE 170 

24 STORE IN SINa 1 

25 CALL COSINE 70 

26 MULTIPLY BY F 20 

27 MULTIPLY BY Kg 20 

28 STORE IN T 1 

29 FETCH COS6 1 

30 MULTIPLY BY F2 20 

31 MULTIPLY BY Kg 20 

32 ADD T 1 

33 ADD K? 1 

34 STORE IN Y 1 

35 FETCH SINB 1 

36 MULTIPLY BY F2 20 

37 MULTIPLY BY Kfi 20 

38 STORE IN T 1 

39 FETCH SINa 1 

40 MULTIPLY BY F 20 

41 MULTIPLY BY K5 20 

42 ADD T 1 

43 ADD K^ 1 

44 STORE IN X 1 

TABLE A-l.  COORDINATE TRANSFORMATION PROGRAM. 
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1.  Load XL •* R 1 

2.   Load Y •*• R2 
radar report values 

3. Load starting address of track table •* R„ 

4. Load N -*• R, (N • no. of tracks) 

• 5.  Subtract X-value of track (address In R~) from R-, 
leaving answer in accumulator.  Increment R~. 

6. Output accumulator (AX) to hardwired logic. 

7. Subtract Y-value of track (address in R3) from R2, 
leaving answer in accumulator.  Increment R3. 

8. Output accumulator (AY) to hard-wired logic. 

9. Decrement R4, skip next instruction if result is zero. 

'10.  Jump to instruction #5. 

11.  Continue to remainder of program. 

R,, R£, R3, and R4 are internal 
microprocessor registers.  Instructions 
#l-#4 set up a computational loop 
consisting of the six instructions 
#5-#10.  When the program exits to 
instruction #11, it has completed the 
coarse correlation of one radar report 
against N target tracks. 

TABLE A-2.  SUB-PROGRAM FOR COARSE TRACK-CORRELATION. 
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APPENDIX B 

PROGRAMMING CONSIDERATIONS 

This Appendix will describe how the microprocessor program for 

the "baseline" satellite processor proceeds from one function to another. 

In general, the program contains several decision points which compare 

the counts in various registers and also the status of the I/O control 

lines. Direct Memory Access (DMA) is performed upon demand by the 

central computer and is carried out using the central computer clock. 

Upon completion of DMA, the satellite processor clock is restored, 

and the program resumes from the point of interruption. 

Reference Address Registers 

The program developed for the satellite processor progresses 

according to the amount of data received and the amount of radar data 

processed. This is accomplished by regular referencing to various 

address registers.  These address registers are listed in Table B-l. 

To accommodate the overlap in frames (when data from the previous 

frame are being returned to the computer while new radar data are 

being received), two separate radar data address counters are used, 

one for even-numbered frames, and one for odd-numbered frames.  "Odd" 

and "Even" are arbitrarily determined by a modulo-two counter that 

counts frame-start synchronization signals. For example, counter "a" 

will count all radar data entered during the first (odd) frame.  Then 

counter "b" will count all radar data in the next (even) frame. 
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"a"   last radar data address entered from 
start of odd frame. 

"b"   last radar data address entered from 
start of even frame. 

"c"   last radar data address which has been 
coordinate converted. 

"d"   last radar data address which has been 
correlated. 

"e"   site data address counter. 

"f"   current track data address. 

"g"   last track data address. 

"h"   last address of data transferred from 
satellite to computer. 

Table B-l.  Register Identification. 
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After all data have been returned to the computer from the first 

frame—which occurs within 0.5 seconds of the end of the frame— 

counter "a" is cleared and ready to count radar data in the next 

odd frame, which will begin in about 5.5 seconds. 

Reference address registers (counters) "a" and "b", as 

appropriate, are continually incremented throughout their respective 

frames as new radar data are received. As these radar data are 

coordinate-converted, register "c" is incremented to indicate how 

many radar data have been coordinate-converted during each frame. 

Similarly, register "d" is incremented once every time one coordinate- 

converted radar data point has been correlated with the radar track 

data. 

Register "e" holds the address corresponding to the site number, 

so that the appropriate site data can be addressed during the 

coordinate conversion. Register "f" contains the address of the 

current radar track data during the correlation subroutine. Register 

"g" contains the last radar track address received from the computer. 

This is used to terminate each correlation subroutine by comparison 

with register "f". 

Register "h" contains the address of the last data transferred 

to the computer from the satellite processor. When compared with 

register "a" or "b", as appropriate, this indicates when all data 

have been returned to the computer, and that the register (counter) 
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can be cleared.  This condition affects the re-set command if the 

new frame synchronization pulse has been received. 

The frame-start and radar-data counter select procedure is shown 

in Figure B-l.  Upon the occurrence of the frame signal, a circuit 

will alternately select registers "a" and "b" for counting radar 

input data.  The appropriate counter will be cleared after "reset", 

as depicted in Figure B-2. 

Figure B-2 is the program description for performing coordinate 

conversions and track correlations. Upon the generation of a re-set 

command, counters c, d, e, f, g, and h are initialized.  If counter 

"a" has been enabled by the counter "a/b" selection circuit, then 

counter "b" is cleared; if counter "b" has been selected, then 

counter "a" is cleared.  Next, if the content of the uncleared 

counter, above, exceeds the number of coordinate conversions 

executed (indicated by counter "c"), then a coordinate conversion 

is executed on the data corresponding to the count (address) in "c", 

after which "c" is incremented by one count and the program returns 

to point A. 

If the coordinate-conversion sequence has caught up with the 

input data, and if all track data have been received, and if coordinate- 

converted data exist which have not been correlated (c>d), then the 

correlation sequence will be entered for the address in counter "d". 

When a correlation sequence has been completed, counter "d" is 

incremented by one and the track data address counter is initialized, 
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FRAME    SYNCHRONIZATION 

COUNT 
FRAMES 

MODULO-2 

YES IS NO 
i <TRAME NUMBER?  

\   ODD?/ 

1 'i 

ENABLE "A" ENABLE"B" 
FOR COUNTING FOR COUNTING 

INPUT  DATA INPUT DATA 
DISABLE INPUT DISABLE INPUT 

TO"B" TO "A" 

> 1 1 

-   1 

RETURN TO 
MAIN  PROGRAM 

Figure  B-l COUNTER "A"/"B" SELECTION 
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Figure B-2 FLOW DIAGRAM FOR COORDINATE  CONVERSION AND TRACK CORRELATION 
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to be ready for the next correlation; the program is directed to 

point A so that coordinate conversions can be carried out on any 

additional radar data that may have been received in the interim. 

If no more data were received, then the program will advance to the 

correlation sequence for the next address in "d", etc. Whenever 

a correlation process has been completed, the "Data Ready" flag to 

the computer will be raised. When the satellite processor has 

transmitted all data prepared for the computer at any time, the 

"Data Ready" flag will be dropped. Thus the computer can transfer 

data from the satellite processor at will, whenever the "Data Ready" 

flag is raised. This flag will typically be raised and lowered many 

times during the last three seconds of each frame if the computer 

requests data as they are generated.  By delaying its request to just 

after the beginning of a frame, all data could be transferred during 

a fairly short time period.  The satellite will automatically accom- 

modate either mode of data transfer. 

DMA Operation 

All data transfer can be effected by DMA.  The previously 

mentioned control lines between the satellite processor and the 

computer will determine whether the satellite should input or output 

data, and, if inputting data, whether they are radar data, track 

data, or site data.  Also required is a line from the central 

computer indicating that track data transmission is finished, and 

lines from the satellite processor acknowledging the DMA request 
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and indicating that it has data ready to transfer.  Other lines 

from the computer will indicate beginning-of-frame, and will provide 

the data strobe to the satellite processor for inputting or outputting 

data. 

Figure B-3 shows the general operation of the DMA. DMA can 

occur on any machine cycle of the satellite processor, which is 

330 nanoseconds.  Therefore, the satellite processor will respond 

to a DMA request within, at most, several machine cycles.  This is 

achieved by simply re-synchronizing the DMA request with the satellite 

processor clock, and AND-ing this with the appropriate microprocessor 

controls.  The proper control lines must, of course, be set by the 

time the DMA request is issued.  Data will be clocked in or out under 

control of the computer. A one-megahertz clock is assumed, although 

this is not very critical.  As data are entered or outputted, appropriate 

counters will be incremented to keep track of the data transfers. 

When the DMA request line returns to normal, the satellite processor 

will continue from the point at which it was stopped. 
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DMA   REQUEST 
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Figure     B-3    FLOW  DIAGRAM FOR DMA PROCEDURE 
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